21 Robotics Companies and Startups on the Forefront of Innovation

Robotics is an interdisciplinary sector of science and engineering dedicated to the design, construction and use of mechanical robots. Our guide will give you a concrete grasp of robotics, including different types of robots and how they’re being applied across industries.
Robotics is the intersection of science, engineering and technology that produces machines, called robots, that replicate or substitute for human actions. Pop culture has always been fascinated with robots — examples include R2-D2, the Terminator and WALL-E. These over-exaggerated, humanoid concepts of robots usually seem like a caricature of the real thing. But are they more forward thinking than we realize? Robots are gaining intellectual and mechanical capabilities that don’t put the possibility of a R2-D2-like machine out of reach in the future.
As technology progresses, so too does the scope of what is considered robotics. In 2005, 90 percent of all robots could be found assembling cars in automotive factories. These robots consist mainly of mechanical arms tasked with welding or screwing on certain parts of a car.
Today, we’re seeing an evolved and expanded definition of robotics that includes the development, creation and use of bots that accomplish tasks like exploring the planet’s harshest conditions, assisting law enforcement, streamlining surgical procedures and undertaking rescue missions.
While the overall world of robotics is expanding, a robot has some consistent characteristics:
We’re bound to see the promise of the robotics industry sooner, rather than later, as artificial intelligence and software also continue to progress. In the near future, thanks to advances in these technologies, robots will continue getting smarter, more flexible and more energy efficient. They’ll also continue to be a main focal point in smart factories, where they’ll take on more difficult challenges and help to secure global supply chains.
The robotics industry is filled with an admirable promise of progress that science fiction could once only dream about. From the deepest depths of our oceans to thousands of miles in outer space, robots will be found performing tasks that humans couldn’t dream of achieving alone.
The word robot is derived from the Czech word robota, which means “forced labor.” The word first appeared in the 1920 play R.U.R., in reference to the play’s characters who were mass-produced workers incapable of creative thinking.
Mechanical bots come in all shapes and sizes to efficiently carry out the task for which they are designed. All robots vary in design, functionality and degree of autonomy. From the 0.2 millimeter-long “RoboBee” to the 200 meter-long robotic shipping vessel “Vindskip,” robots are emerging to carry out tasks that humans simply can’t.
There are five distinct types of robots that perform tasks depending on their capabilities. Below is an outline of these types and what they do.
Pre-programmed robots operate in a controlled environment where they do simple, monotonous tasks. An example of a pre-programmed robot would be a mechanical arm on an automotive assembly line. The arm serves one function — to weld a door on, to insert a certain part into the engine, etc. — and its job is to perform that task longer, faster and more efficiently than a human.
Humanoid robots are robots that look like or mimic human behavior. These robots usually perform human-like activities (like running, jumping and carrying objects), and are sometimes designed to look like us, even having human faces and expressions. Two of the most prominent examples of humanoid robots are Hanson Robotics’ Sophia and Boston Dynamics’ Atlas.
Autonomous robots operate independently of human operators. These robots are usually designed to carry out tasks in open environments that do not require human supervision. They are quite unique because they use sensors to perceive the world around them, and then employ decision-making structures (usually a computer) to take the optimal next step based on their data and mission. One example of an autonomous robot is the Roomba vacuum cleaner, which uses sensors to roam freely throughout a home.
Teleoperated robots are semi-autonomous bots that use a wireless network to enable human control from a safe distance. These robots usually work in extreme geographical conditions, weather and circumstances. Examples of teleoperated robots are the human-controlled submarines used to fix underwater pipe leaks during the BP oil spill or drones used to detect landmines on a battlefield.
Augmenting robots, also known as VR robots, either enhance current human capabilities or replace the capabilities a human may have lost. The field of robotics for human augmentation is a field where science fiction could become reality very soon, with bots that have the ability to redefine the definition of humanity by making humans faster and stronger. Some examples of current augmenting robots are robotic prosthetic limbs or exoskeletons used to lift hefty weights.
Software robotics, also called bots, are computer programs which carry out tasks autonomously. One common use case of software robots is a chatbot. A chatbot is a computer program that simulates conversation both online and over the phone and is often used in customer service scenarios. Chatbots can either be simple services that answer questions with an automated response or more complex digital assistants that learn from user information.
Software robots only exist on the internet and originate within a computer, which means they are not considered robots. In order to be considered a robot, a device must have a physical form, such as a body or a chassis.
Independent robots are capable of functioning completely autonomously and independent of human operator control. These typically require more intense programming but allow robots to take the place of humans when undertaking dangerous, mundane or otherwise impossible tasks, from bomb diffusion and deep-sea travel to factory automation. Independent robots have proven to be the most disruptive to society, as they eliminate certain jobs but also present new possibilities for growth.
Dependent robots are non-autonomous robots that interact with humans to enhance and supplement their already existing actions. This is a relatively new form of technology and is being constantly expanded into new applications, but one form of dependent robots that has been realized is advanced prosthetics that are controlled by the human mind.
A famous example of a dependent robot was created by Johns Hopkins APL in 2018 for Johnny Matheny, a patient whose arm was amputated above the elbow. Matheny was fitted with a modular prosthetic limb so researchers could study its use over a sustained period. The MPL is controlled via electromyography, or signals sent from his amputated limb that controls the prosthesis. Over time, Matheny became more efficient in controlling the MPL and the signals sent from his amputated limb became smaller and less variable, leading to more accuracy in its movements and allowing Matheny to perform tasks as delicate as playing the piano.
Robots are built to present solutions to a variety of needs and fulfill several different purposes, and therefore, require a variety of specialized components to complete these tasks.
However, there are several components that are central to every robot’s construction, like a power source or a central processing unit. Generally speaking, robotics components fall into these five categories:
Computation includes all of the components that make up a robot’s central processing unit, often referred to as its control system. Control systems are programmed to tell a robot how to utilize its specific components, similar in some ways to how the human brain sends signals throughout the body, in order to complete a specific task. These robotic tasks could comprise anything from minimally invasive surgery to assembly line packing.
Sensors provide a robot with stimuli in the form of electrical signals that are processed by the controller and allow the robot to interact with the outside world. Common sensors found within robots include video cameras that function as eyes, photoresistors that react to light and microphones that operate like ears. These sensors allow the robot to capture its surroundings and process the most logical conclusion based on the current moment and allows the controller to relay commands to the additional components.
A device can only be considered to be a robot if it has a movable frame or body. Actuators are the components that are responsible for this movement. These components are made up of motors that receive signals from the control system and move in tandem to carry out the movement necessary to complete the assigned task. Actuators can be made of a variety of materials, such as metal or elastic, and are commonly operated by use of compressed air (pneumatic actuators) or oil (hydraulic actuators) but come in a variety of formats to best fulfill their specialized roles.
Like the human body requires food in order to function, robots require power. Stationary robots, such as those found in a factory, may run on AC power through a wall outlet but more commonly, robots operate via an internal battery. Most robots utilize lead-acid batteries for their safe qualities and long shelf life while others may utilize the more compact but also more expensive silver-cadmium variety. Safety, weight, replaceability and lifecycle are all important factors to consider when designing a robot’s power supply.
Some potential power sources for future robotic development also include pneumatic power from compressed gasses, solar power, hydraulic power, flywheel energy storage organic garbage through anaerobic digestion and nuclear power.
End effectors are the physical, typically external components that allow robots to finish carrying out their tasks. Robots in factories often have interchangeable tools like paint sprayers and drills, surgical robots may be equipped with scalpels and other kinds of robots can be built with gripping claws or even hands for tasks like deliveries, packing, bomb diffusion and much more.
Robots have a wide variety of use cases that make them the ideal technology for the future. Soon, we will see robots almost everywhere. We’ll see them in hospitals, hotels and even on roads.
The manufacturing industry is probably the oldest and most well-known user of robots. These robots and co-bots (bots that work alongside humans) work to efficiently test and assemble products, like cars and industrial equipment. It’s estimated that there are more than three million industrial robots in use right now.
Shipping, handling and quality control robots are becoming a must-have for most retailers and logistics companies. Because we now expect our packages to arrive at blazing speeds, logistics companies employ robots in warehouses, and even on the road, to help maximize time efficiency. Right now, there are robots taking your items off the shelves, transporting them across the warehouse floor and packaging them. Additionally, a rise in last-mile robots (robots that will autonomously deliver your package to your door) ensure that you’ll have a face-to-metal-face encounter with a logistics bot in the near future.
It’s not science fiction anymore. Robots can be seen all over our homes, helping with chores, reminding us of our schedules and even entertaining our kids. The most well-known example of home robots is the autonomous vacuum cleaner Roomba. Additionally, robots have now evolved to do everything from autonomously mowing grass to cleaning pools.
Is there anything more science fiction-like than autonomous vehicles? These self-driving cars are no longer just imagination. A combination of data science and robotics, self-driving vehicles are taking the world by storm. Companies like Tesla, Ford, Waymo, Volkswagen and BMW are all working on the next wave of travel that will let us sit back, relax and enjoy the ride. Rideshare companies Uber and Lyft are also developing autonomous rideshare vehicles that don’t require humans to operate the vehicle.
Robots have made enormous strides in the healthcare industry. These mechanical marvels have use in just about every aspect of healthcare, from robot-assisted surgeries to bots that help humans recover from injury in physical therapy. Examples of robots at work in healthcare are Toyota’s healthcare assistants, which help people regain the ability to walk, and TUG, a robot designed to autonomously stroll throughout a hospital and deliver everything from medicines to clean linens.
Robots have been employed by pharmaceutical companies to help the fight against COVID-19. These bots are now being used to fill and seal COVID-19 testing swabs, and are also being used by some manufacturers to produce PPE and respirators.
People have been pondering robots since ancient civilizations incorporated myths and beliefs of “thinking machines” into their societies and invented the water clock. Robotics has drastically changed since the time of the Greeks, Romans and Egyptians, but its history is vast. Here’s a look at some of the most important events that shaped the history of robotics.