Cerebras Systems builds the world's largest AI chip, 56 times larger than GPUs. Our novel wafer-scale architecture provides the AI compute power of dozens of GPUs on a single chip, with the programming simplicity of a single device. This approach allows Cerebras to deliver industry-leading training and inference speeds and empowers machine learning users to effortlessly run large-scale ML applications, without the hassle of managing hundreds of GPUs or TPUs.
Cerebras' current customers include global corporations across multiple industries, national labs, and top-tier healthcare systems. In January, we announced a multi-year, multi-million-dollar partnership with Mayo Clinic, underscoring our commitment to transforming AI applications across various fields. In August, we launched Cerebras Inference, the fastest Generative AI inference solution in the world, over 10 times faster than GPU-based hyperscale cloud inference services.
- Develop, document, and maintain automation tools and scripts to deploy and configure software clusters in data centers, improving deployment efficiency and reducing operational overhead.
- Troubleshoot issues related to software deployments, system performance, and server management across our distributed infrastructure.
- Identify opportunities to automate manual processes, improve system reliability, and optimize scalability.
- Collaborate with cross-functional teams for design review and operations, ensuring robust management of servers, storage, networking, power, and cooling equipment.
- 3+ years of professional software development experience.
- Proficiency in Python and strong experience with automation frameworks (e.g., Ansible) and Bash scripting.
- Experience designing or architecting software systems.
- Professional experience with one or more of the following:
- Data center networking (configuration, maintenance, troubleshooting, protocols like BGP).
- Kubernetes (Helm chart development, troubleshooting containerized services).
- Solid understanding of Linux server administration and troubleshooting.
People who are serious about software make their own hardware. At Cerebras we have built a breakthrough architecture that is unlocking new opportunities for the AI industry. With dozens of model releases and rapid growth, we’ve reached an inflection point in our business. Members of our team tell us there are five main reasons they joined Cerebras:
- Build a breakthrough AI platform beyond the constraints of the GPU.
- Publish and open source their cutting-edge AI research.
- Work on one of the fastest AI supercomputers in the world.
- Enjoy job stability with startup vitality.
- Our simple, non-corporate work culture that respects individual beliefs.
Read our blog: Five Reasons to Join Cerebras in 2025.
Apply today and become part of the forefront of groundbreaking advancements in AI!Cerebras Systems is committed to creating an equal and diverse environment and is proud to be an equal opportunity employer. We celebrate different backgrounds, perspectives, and skills. We believe inclusive teams build better products and companies. We try every day to build a work environment that empowers people to do their best work through continuous learning, growth and support of those around them.
This website or its third-party tools process personal data. For more details, click here to review our CCPA disclosure notice.
Similar Jobs
What We Do
Cerebras Systems is a team of pioneering computer architects, computer scientists, deep learning researchers, functional business experts and engineers of all types. We have come together to build a new class of computer to accelerate artificial intelligence work by three orders of magnitude beyond the current state of the art.
The CS-2 is the fastest AI computer in existence. It contains a collection of industry firsts, including the Cerebras Wafer Scale Engine (WSE-2). The WSE-2 is the largest chip ever built. It contains 2.6 trillion transistors and covers more than 46,225 square millimeters of silicon. The largest graphics processor on the market has 54 billion transistors and covers 815 square millimeters. In artificial intelligence work, large chips process information more quickly producing answers in less time. As a result, neural networks that in the past took months to train, can now train in minutes on the Cerebras CS-2 powered by the WSE-2.
Join us: https://cerebras.net/careers/