Performance Engineer

Reposted 14 Days Ago
Be an Early Applicant
Toronto, ON
In-Office
Senior level
Artificial Intelligence
The Role
As a Performance Engineer, you will optimize CPU and memory subsystems for high-performance ML workloads on x86 machines, develop algorithms for data movement, and engage with the AI community to enhance our AI platform.
Summary Generated by Built In

Cerebras Systems builds the world's largest AI chip, 56 times larger than GPUs. Our novel wafer-scale architecture provides the AI compute power of dozens of GPUs on a single chip, with the programming simplicity of a single device. This approach allows Cerebras to deliver industry-leading training and inference speeds and empowers machine learning users to effortlessly run large-scale ML applications, without the hassle of managing hundreds of GPUs or TPUs.  

Cerebras' current customers include global corporations across multiple industries, national labs, and top-tier healthcare systems. In January, we announced a multi-year, multi-million-dollar partnership with Mayo Clinic, underscoring our commitment to transforming AI applications across various fields. In August, we launched Cerebras Inference, the fastest Generative AI inference solution in the world, over 10 times faster than GPU-based hyperscale cloud inference services.

About The Role
Join Cerebras as a Performance Engineer within our innovative Runtime Team. Our groundbreaking CS-3system, hosted by a distributed set of modern and powerful x86 machines, has set new benchmarks in high-performance ML training and inference solutions. It leverages a dinner-plate sized chip with 44GB of on-chip memory to surpass traditional hardware capabilities. This role will challenge and expand your expertise in optimizing AI applications and managing computational workloads primarily on the x86 architecture that run our Runtime driver.
 
Responsibilities
  • Focus on CPU and memory subsystem optimizations for our Runtime software driver, enabling faster key cloud and ML training/inference workloads across modern x86 machines that form the backbone of our AI accelerator.
  • Develop and enhance algorithms for efficient data movement, local data processing, job submission, and synchronization between various software and hardware components.
  • Optimize our workloads using advanced CPU features like AVX instructions, prefetch mechanisms, and cache optimization techniques.
  • Perform performance profiling and characterization using tools such as AMD uprof, and reduce OS level overheads.
  • Influence the design of Cerebras' next-generation AI architectures and software stack by analyzing the integration of advanced CPU features and their impact on system performance and computational efficiency.
  • Engage directly with the AI and ML developer community to understand their needs and solve contemporary challenges with innovative solutions.
  • Collaborate with multiple teams within Cerebras, including architecture, research, and product management, to elevate our computational platform and influence future designs.
Skills & Qualifications
  • BS, MS, or PhD in Computer Science, Computer Engineering, or a related field.
  • 5+ years of relevant experience in performance engineering, particularly in optimizing algorithms and software design.
  • Strong proficiency in C/C++ and familiarity with Python or other scripting languages.
  • Demonstrated experience with memory subsystem optimizations and system-level performance tuning.
  • Experience with distributed systems is highly desirable, as it is crucial to optimizing the performance of our Runtime software across multiple x86 hosts.
  • Familiarity with compiler technologies (e.g., LLVM, MLIR) and with PyTorch and other ML frameworks.
Why Join Cerebras

People who are serious about software make their own hardware. At Cerebras we have built a breakthrough architecture that is unlocking new opportunities for the AI industry. With dozens of model releases and rapid growth, we’ve reached an inflection  point in our business. Members of our team tell us there are five main reasons they joined Cerebras:

  1. Build a breakthrough AI platform beyond the constraints of the GPU.
  2. Publish and open source their cutting-edge AI research.
  3. Work on one of the fastest AI supercomputers in the world.
  4. Enjoy job stability with startup vitality.
  5. Our simple, non-corporate work culture that respects individual beliefs.

Read our blog: Five Reasons to Join Cerebras in 2025.

Apply today and become part of the forefront of groundbreaking advancements in AI!

Cerebras Systems is committed to creating an equal and diverse environment and is proud to be an equal opportunity employer. We celebrate different backgrounds, perspectives, and skills. We believe inclusive teams build better products and companies. We try every day to build a work environment that empowers people to do their best work through continuous learning, growth and support of those around them.

This website or its third-party tools process personal data. For more details, click here to review our CCPA disclosure notice.

Top Skills

Amd Uprof
C/C++
Llvm
Mlir
Python
PyTorch
Am I A Good Fit?
beta
Get Personalized Job Insights.
Our AI-powered fit analysis compares your resume with a job listing so you know if your skills & experience align.

The Company
HQ: Sunnyvale, CA
402 Employees
Year Founded: 2016

What We Do

Cerebras Systems is a team of pioneering computer architects, computer scientists, deep learning researchers, functional business experts and engineers of all types. We have come together to build a new class of computer to accelerate artificial intelligence work by three orders of magnitude beyond the current state of the art.

The CS-2 is the fastest AI computer in existence. It contains a collection of industry firsts, including the Cerebras Wafer Scale Engine (WSE-2). The WSE-2 is the largest chip ever built. It contains 2.6 trillion transistors and covers more than 46,225 square millimeters of silicon. The largest graphics processor on the market has 54 billion transistors and covers 815 square millimeters. In artificial intelligence work, large chips process information more quickly producing answers in less time. As a result, neural networks that in the past took months to train, can now train in minutes on the Cerebras CS-2 powered by the WSE-2.

Join us: https://cerebras.net/careers/

Similar Jobs

NVIDIA Logo NVIDIA

Senior DL Algorithms Engineer - Inference Performance

Artificial Intelligence • Computer Vision • Hardware • Robotics • Metaverse
In-Office
Toronto, ON, CAN
116K-247K
In-Office
Mississauga, ON, CAN
In-Office
3 Locations

Boson AI Logo Boson AI

High Performance Computing Engineer

Artificial Intelligence • Machine Learning
Hybrid
Toronto, ON, CAN
150K-250K Annually

Similar Companies Hiring

Scrunch AI Thumbnail
Software • SEO • Marketing Tech • Information Technology • Artificial Intelligence
Salt Lake City, Utah
Credal.ai Thumbnail
Software • Security • Productivity • Machine Learning • Artificial Intelligence
Brooklyn, NY
Standard Template Labs Thumbnail
Software • Information Technology • Artificial Intelligence
New York, NY
10 Employees

Sign up now Access later

Create Free Account

Please log in or sign up to report this job.

Create Free Account